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The antiferromagnetism of the monoclinic crystal FeC^ • 4H20, especially its ordered spin arrangement, is 
considered. By replacing the spin operators in the appropriate spin Hamiltonian by the classical spin vectors, 
we look for the lowest energy state of the spin arrangement. A model similar to one proposed by Spence et al. 
is obtained as the lowest energy arrangement of the spins, although it differs in detail. In doing so, we assume 
the four-sublattice model and isotropic exchange interactions between magnetic ions up to the fourth nearest 
neighbors. The susceptibilities in the directions of the magnetic principal axes are calculated at 0°K in a 
classical way. Comparison with the experimental results permits us to estimate the exchange integrals in 
reasonable order of magnitude. 

1. INTRODUCTION 

RECENT measurements of the specific heat, the 
susceptibility, the paramagnetic resonance absorp­

tion, and the proton resonance absorption in ferrous 
chloride tetrahydrate have revealed the details of the 
magnetic behavior at very low temperatures. Below 
about 1°K, FeCl2- 4H 2 0 is in an antiferromagnetic state, 
and above about 1.5°K this crystal behaves as a typical 
paramagnetic salt like the Tutton salt or fluorosilicate. 

A crystal of FeCl2*4H20, whose crystal growth habit 
was described by Groth,1 belongs crystallographically to 
the monoclinic system. A detailed determination of the 
crystal structure has been made by Penfold and Grigor.2 

According to their results, its space group is P2\jc and 
the dimensions of the unit cell are a=5.91 A, 6= 7.17 A 
(monoclinic or diad axis), c=8.44 A with (3= 112° 10'. 

The structure is made up of discrete units consisting 
of an Fe + + ion surrounded by two chlorine ions and four 
water molecules arranged in a distorted octahedron. In 
a unit cell, two of these groups are found, and F e ^ ions 
occupy inequivalent sites. In Fig. 1 (a), the basic struc­
tural unit is shown. The 0(1)-0(1) axis is perpendicular 
to the plane defined by the 0(2)-0(2) and Cl-Cl axes, 
which make an angle of 81° with one another. Figure 
1 (b) indicates the relative orientations of the octahedra 
about the two inequivalent Fe + + ions in the unit cell. 
In this figure, we denote two inequivalent sites as A and 
B, and the two octahedra at both sites are projected on 
the z-x plane. The contents of a unit at site A may be 
transformed into those at site B by reflection in an a-c 
plane located at b/A followed by a translation of c/2 
along c. The two essentially parallel 0(1)-0(1) axes at 
sites A and B lie very nearly in the a-c plane (tipping 
out of that plane by no more than 1°) and deviate 
from the c direction by an angle of approximately 3 | ° . 
This local diad axis 0(1)-0(1) , which we call the micro­
scopic z' axis, deviates from the principal susceptibility 
axis (which we call the macroscopic y axis) by no more 
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than 2°. The two sites A and B lie on two interpenetrat­
ing lattices and form a body-centered structure. That is, 
if we chose a B-site ion for the central ion the ions on the 
A site form a parallelopiped in which four rectangular 
faces are perpendicular to the a-c plane. The central ion 
has four nearest neighbors (n.n.) at 5.54 A, two second 
n.n. in the a direction at 5.91 A, four third n.n. at 6.84 A 
and two fourth n.n. in the b direction at 7.71 A. 

Pierce and Friedberg3 have measured the suscepti­
bility of the powdered material and found that within 
the temperature range 14-^20°K the Curie-Weiss law 
Xm=3.61 / ( r+2) well describes its temperature de­
pendence, and at about 1.6°K the susceptibility shows a 
maximum. Recently, within the temperature interval 
from 4.2 to 0.35°K, Schriempf and Friedberg4 carried 
out single-crystal measurements along the b, c, and a! 
axes, where the a' direction is perpendicular to both the 
b and c directions and lies in the a-c plane. Here we 
define the macroscopic axes x, y, and z which take the 
place of a', c, and b, respectively. The most striking fact 
in the gross features of the measured susceptibility 
curves is that both Xb(Xz) and Xa'{xx) pass through pro­
nounced maxima at about 1.5°K, while Xc(xy) is 

Site A 

Site B 

0(2) 

FIG. 1. (a) Local environment of Fe+ + ion in the crystal of 
FeCl2-4H20. Unit of distance is angstroms, (b) Local environ­
ments of A- and B-site Fe+ + ions projected on the z-x plane. 

3 R. D. Pierce and S. A. Friedberg, J. Appl. Phys. 32, 66S (1961). 
4 J. T. Schriempf and S. A. Friedberg (to be published). 
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FIG. 2. The ordered 
spin arrangement 
in FeCl2-4H20. The 
dashed arrows show 
the spin arrangement 
proposed by Spence 
et al., and the bold 
arrows show the one 
which has been ob­
tained in the present 
work. 

essentially temperature independent over much of the 
range stated. The location of the Neel temperature TV, 
however, is near 1 °K which corresponds to the tempera­
ture at which dx/dT assumes its maximum value. 
Specific heat measurements5 also strongly suggest the 
occurrence of a cooperative transition near 1°K. Below 
TV, Xb(x2) resembles the susceptibility of a typical anti-
ferromagnet measured along the direction of preferred 
spin alignment, although there is some indication that 
the data taken at the lowest temperatures may extrapo­
late to a small finite value at 0°K. 

Proton resonance studies by Spence et al.6 suggest a 
curious transition phase lying between the paramagnetic 
and antiferromagnetic phases. Above 1.1 °K, they ob­
served a set of lines whose behavior with varying 
orientation indicates a paramagnetic state. At about 
1.1 °K, these lines disappear and no other lines are ob­
served until the temperature is reduced to 0.7°K. Below 
0.7°K, 16 lines whose angular dependence is character­
istic of the antiferromagnetic state can be observed. 
This result should correspond to the fact that TN will 
be located near 1°K. The 16 lines of the antiferromag­
netic state arise from four different sets of local fields. 
Therefore, from symmetry considerations Spence et al. 
proposed the spin arrangement in the ordered state 
which is shown in Fig. 2. 

Following the procedure employed by Schriempf and 
Friedberg, we first choose one of the microscopic 
principal axes of the crystalline field zf to coincide with 
the 0(1)-0(1) direction. The other two local axes, yf and 
x\ are taken in the plane containing 0(2)-0(2) and 
Cl-Cl pairs. X' makes an angle of a with the b axis 
measured toward the appropriate 0(2)-0(2) direction. 
Thus the macroscopic z-x plane is essentially parallel to 
each x'-y' plane. Here it should be noted that a for the 
B ions has a different sign from the one for A ions. 

As stated before, above 1.5°K, FeCl2*4H20 is a 
5 S. A. Friedberg, A. F. Cohen, and J. H. Schelleng, J. Phys. Soc. 

Japan 17, Suppl. B-I, 515 (1962). 
6 R. D. Spence, R. Au, and P. Van Dalen, Bull. Am. Phys. Soc. 

9, 113 (1964). 

typical paramagnetic salt, and we can well describe its 
magnetic behavior by the following spin Hamiltonian: 

+ fJ>B(gx>HX>SZ> + gy>Hy>Sy> + g2>HZ>SZ') , (1.1) 

where /zB the Bohr magneton, gi the anisotropic splitting 
factor, and the crystalline field parameters D and E are 
defined as follows: 

E=%\2[AX>X—A„v], 

# = 2 ( 1 —\A«), 

,0], (1.2a) 

(1.2b) 

(1.2c) 

and 
^a='L{0\Li\n){n\Li\0)/(Wn-Wt)). (I.2d) 

In these equations, A is the spin-orbit coupling constant 
and Wn and | n) are the ^th energy level and the nth 
excited state, respectively, which are split from a 
degenerate 5D state of the free Fe + + ion. In Eq. (1.1), 
the monoclinic symmetry of the microscopic crystalline 
field has been taken into account, and the weak ex­
change interactions between magnetic ions are tenta­
tively neglected. 

Starting from the spin Hamiltonian (1.1), we can 
calculate the paramagnetic susceptibilities in the direc­
tions of the microscopic principal axes as 

x3 ,=-
2 ^ W A 

Xx/ = - (1.3) 

T+(7/5)D+2A* 

2gx>W/k 

T-(7/10)(D-3E)+2A*' 

2gy>W/k 
X , = 

T - ( 7 / 1 0 ) ( # + 3 £ ) + 2 , 4 * ' 

where k is the Boltzmann constant and 2^4* shows the 
additional term which will appear if we modify the 
Hamiltonian to include the effect of weak exchange 
interaction in a molecular-field approximation. We 
transform x^, Xy*y and xz* to the macroscopic principal 
susceptibilities Xx, Xy, and xz by the following relations. 

Xz' Xy , 

XZ=XX' c o s 2 a + X ^ sin2o;, 

Xx=Xy' c o s ^ + X s ' sin2a. 

(1.4) 

By using the complete expressions for xX'9 Xy', Xz> and 
(1.4), Schriempf and Friedberg have tried to get the 
values of D, E, and a which will give the best agreement 
with their measurements and have obtained 

Z>=1.83ife, E=-1.32k, = 30°. (1.5) 

The results (1.5) not only well explain both the mag­
netic and the thermal behavior of FeCl2*4H20 in the 
paramagnetic region, but also will give us some informa­
tion as to its antiferromagnetic state. In the next sec-
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tion, we shall discuss the ordered spin arrangement in 
the antiferromagnetic state by using this result and a 
reasonable assumption about the exchange integrals 
which originate in the usual superexchange mechanism. 
Then we can get the lowest energy configuration of the 
spins. This configuration will be compared with the 
model proposed by Spence et al. We shall obtain an 
arrangement of the spins similar to that given by Spence 
et al., but one in which the spins are canted in the x-z 
plane and are not simply parallel to the b(z) axis. In 
Sec. 3, we calculate the susceptibilities at the absolute 
zero along three principal axes. The exchange parame­
ters which appear in the susceptibility expression are 
estimated from the measured susceptibilities extrapo­
lated to 0°K. In order to facilitate the mathematical 
manipulation, the above calculation does not include a 
contribution due to magnetic-dipole interaction, because 
its magnitude will be much smaller than the crystalline 
field effects. However, as we shall see, the estimated 
exchange parameters are found to be comparable in 
order of magnitude with the magnetic-dipole inter­
action. In the Appendix, its effects will be considered 
and discussed. Finally, in Sec. 4, we shall discuss the 
Moriya-Dzyaloshinsky7 interactions which exist be­
tween first and third nearest neighbors. 

2. ORDERED SPIN ARRANGEMENT 

The fact that there are two inequivalent sites for Fe + + 

ions in a unit cell initially set us to considering a two-
sublattice model in order to explain the antiferro-
magnetism. As stated in Sec. 1, the directions of the 
anisotropic crystalline fields around the A- and i?-site 
ions are different from each other. Therefore, it may be 
possible to have the so-called parasitic ferromagnetism 
which is caused by canting the spins from pure anti-
parallelism.8-9 Also, the Moriya-Dzyaloshinsky inter­
action will contribute to the canting and the parasitic 
ferromagnetism. FeCl2-4H20, however, does not exhibit 
any evidence of a spontaneous ferromagnetic moment 
at or below the Neel point. I t appears, therefore, that a 
two-sublattice model is not realistic in this crystal. 

As the next step, we shall take a four-sublattice model 
in which we further divide each sublattice of A or B ions 
into two sublattices. For this four-sublattice model, we 
want to seek the ordered spin arrangement in the anti-
ferromagnetic state. In doing so, we assume that in 
each of the four sublattices all spins are parallel, and the 
spin operators which will appear in the Hamiltonian are 
replaced by classical vectors. In addition, the exchange 
interaction between spins are assumed to be isotropic. 
The exchange interactions will be taken up to fourth 
nearest neighbors. 

The Hamiltonian for the present spin system can be 
7 1 . Dzyaloshinsky, Phys. Chem. Solids 4,241 (1958). T. Moriya, 

Phys. Rev. 120, 91 (1960). 
8 T . Oguchi, Busseiron Kenkyu (Japanese lang.) 93, 1 (1956). 

T. Moriya, Phys. Rev. 117, 635 (1960). 
9 N. Uryu, J. Phys. Soc. Japan 16, 2139 (1961). 

written as 

in which 361 represents the sum of one-ion Hamiltonians 
(1.1) and 36ex represents the exchange interactions. If 
we express 561 in terms of spin components taken with 
respect to the macroscopic principal axes, we have 

3Ci= £ {Z?[5B<«*-J5(5+1)] 
»~1,2 

+A (5,«>»-5,<«*)+2B5,<*>5/«} 

+ E {DlSy™-lS(S+l)l 

+A(SX^2-SZW)-2BSJ»SZ^}, (2.2) 

where 
A = ~Ecos2a, B=-Esm2a, (2.3) 

and Sx
(i) shows the x component of the spin belonging 

to the ith sublattice, and so on. The exchange inter­
action can be written as 

3 6 e x - L / * S , . S y , (2.4) 
(ij) 

in which the spin Sy is the M i nearest-neighboring spin 
to the spin S» and the summation is taken all over the 
pairs of spins up to the fourth neighbors. We have four 
parameters Jk (k=l, 2, 3, 4) which we assume to be 
isotropic exchange integrals between the spin S» and its 
kih nearest neighbor. 

The combination of the sublattice spins appearing in 
36ex depends on the way in which we further divide the 
A and B ions into two sublattices. If we restrict the 
manner of division of A (B) ions into two sublattices so 
as to have lattice points belonging to the same sub-
lattice either uniquely or alternately along the crystal 
axes, there can be considered seven models as follows: 

Axis along which the sub-
Type lattice points alternate 

G a, b, c 
1\ a 
T2 b 
r3 c 
IV b, c 
IV a> c 
IV a, b 

We define the components of a vector £ (in a twelve-
dimensional space) by the components of the classical 
vectors S<*\ S<2>, S<3\ and S<4> as follows: 

(€i ,{2,f8)=(5^)A<1) ,5,a)) , 

(&,&,&)= (S^WW'), [ ' } 

Then, we can write A/N times the total energy in a form 
quadratic in £»• as 

£ = E ^ & (Aif=Aji), (2.6) 
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where N is the total number of magnetic ions and the matrices A (A=[^4»y]) for each type of sublattice 
arrangement are given as follows: 

Types G and r8 ' 

A= 

0 B 
D 0 

-A 

r 
o 
o 
A 

0 
J' 
0 
0 

0 
0 

r 
B D 0 

-A 

J 
0 
0 
/ 
0 
0 
A 

0 
J 
0 
0 
J 
0 
0 
D 

0 
0 
/ 
0 
0 
J 

-B 
0 

-A 

Type I \ 

[A+J, 0 
D+J, 

B J2 

0 0 
-A+J, 0 

A+J, 

0 

0 
0 

0 
0 
Ji 
B 
0 

2/ i 
0 
0 

2/3 
0 
0 

0 
2/ i 
0 
0 

2/3 
0 
0 

Types T2 and IY 

M + / 2 0 
D+J2 

A= 

5 / 4 

0 0 
-A+J* 0 

^+/2 

0 
JA 
0 
0 

0 
0 
J, 
B 
0 

-A+J2 

J 
0 
0 
/ 
0 
0 

A+J2 

Type r 3 

(A+J' 0 

A= 

5 0 
0 0 

-A+J' 0 
A+J' 

0 
0 
0 
0 

D+J' 

0 
0 
0 

0 
-A+J' 

J 
0 
0 
/ 
0 
0 

A+J' 

0 
/ 
0 
0 
/ 
0 
0 

D+J' 

J 
0 
0 
/ 
0 
0 
J' 
0 
0 
A 

0 
/ 
0 
0 
/ 
0 
0 

D+J2 

0 
J 
0 
0 
/ 
0 
0 
J' 
0 
0 
D 

0 
0 
/ 
0 
0 
J 
0 
0 
/ ' 

-B 
0 

-A 

0 
0 

2/ i 
0 
0 

2/3 
- £ 

0 
-A+J, 

0 
0 
/ 
0 
0 
/ 

-B 
0 

-A+J* 

2/3 
0 
0 

2 / i 
0 
0 
Ji 
0 
0 

A+J, 

J 
0 
0 
/ 
0 
0 
JA 
0 
0 

A+J2 

0 
2/3 
0 
0 

2/1 
0 
0 
/ 2 
0 
0 

D+J, 

0 
/ 
0 
0 
/ 
0 
0 
JA 
0 
0 

D+J* 

0 
0 

2/3 
0 
0 

2/1 
0 
0 
J* 

~B 
0 

0 
0 
J 
0 
0 
/ 
0 
0 
JA 

-B 
0 

-A+J2j 

0 
0 
J 
0 
0 
/ 

0 
-A+J' 

J 
0 
0 
/ 
0 
0 
0 
0 
0 

A+J' 

0 
J 
0 
0 
/ 
0 
0 
0 
0 
0 

D+J' 

0 
0 
J 
0 
0 
J 
0 
0 
0 

-J3 
0 

(2.7a) 

, (2.7b) 
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The matrix A for IY, can be given in the identical form with that for T2 if we exchange J2 and 74 . In Eqs. (2.7), 
J and J' are defined as 

J=Ji+J*, J'=J2+J4. (2.8) 

Following the method of Luttinger and Tisza,10 the problem of finding the minimum value of (2.6) under a weak 
condition 

£i2+ £ 22H r- Ji22= constant (2.9) 

can be reduced to the diagonalization of the matrix A for each type of four-sublattice arrangements. If the eigen­
vector belonging to the lowest eigenvalue obtained corresponds to a physically realistic solution, that is to say, if 
the solution satisfies also the strong conditions £i2+£22+£32= constant, etc., that eigenvector should give the spin 
arrangement with the lowest energy among the possible four sublattice models. 

To diagonalize each of these matrices, we transform it with the following orthogonal matrix 

V2 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

1 

0 

0 

- 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 1 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

0 

0 

0 

0 

(T 

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 1 

oJ 

(2.10) 

Then Eqs. (2.7) are reduced, with respect to the new 
coordinate £ '=T£, to 4X4 or 2X2 submatrices, and the 
eigenvalues can be obtained as given in Table I. 

Now, we want to compare the magnitudes of the 
twelve eigenvalues for each type of sublattice arrange­
ment and to decide which is the smallest. Such a com­
parison seems to be not so easy, but the following facts 
or considerations will facilitate the task. 

In FeCl2*4H20, the exchange interactions between 
Fe 4 ^ ions are of the superexchange type via at least two 
anions 0~~ or Cl~~. Examination of the detailed crystal 
structure given by Penfold and Grigor gives us some 
information about the superexchange mechanisms. 
Goodenough11 and Kanamori12 have classified the super-
exchange mechanisms for various cases of interacting 
cations. According to them, 180° interaction between 
d6—dQ ions, each in an octahedral site, is antiferro-
magnetic if the relevant bond is a a bond, and is weak 
(and of uncertain sign) if the relevant bond is a IT bond. 
The present case is rather different, because there are 

10 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946). J. M. 
Luttinger, Phys. Rev. 81, 1015 (1951). 

11 J. B. Goodenough, Phys. Chem. Solids, 6, 287 (1958). 
12 J. Kanamori, Phys. Chem. Solids 10, 87 (1959). 

two intervening anions, and they are not in a line con­
necting two Fe 4 ^ ions. Consideration of the bond 
orbitals of the d and p electrons of the ions relevant to 
superexchange, however, permits us to assume 

Jh small and uncertain in sign; 

J2>0, J%>0 (antiferromagnetic); 

j£±Jz; (2.11) 

Jz-Ji>0; 

J±, very small and possibly positive. 

These assumptions permit us to select as the most stable 
spin configuration one whose susceptibilities are found 
to yield consistent Jk's when fitted to the observed 
value. Further, we have from (1.5) and (2.3) 

,4 = 0.66&, 5=1 .14* . (2.12) 

By using the assumption (2.11), and the fact A>0, 
B>0, we can conclude the following: 

(*ain)<?= (*ni»)iy = ~ CM" ̂ ) " {A*+&}W 
or = = / 2 + / 4 » [ J 5 2 + { ^ + 2 ( J 1 + / 3 ) } 2 ] 1 / 2 , 

(2.13) 
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TABLE I. Eigenvalues of the matrix A. 

Type 

G,IY 

T i 

r2, iY 

r3 

€ l , €2 

€3 

€5, €7 

€6, eg 

€9 

€10 

€11 

€12 

€1 

€2 

€3 

€4 

€5 

€6 

€7 

€8 

€9 

€10 

€11 

€12 

€1, €2 

€3 

€4 

€5, €7 

ee, eg 

€9 

€10 

€11 

€12 

€1 , €2 

€3 

€4 

€5, €7 

€6, €8 

D-J2-J4 

Z » + / 2 + / 4 ± 2 ( / i + / 3 ) 

~( /2+/4)±{yl 2 +^ 2 } 1 / 2 

/2+/4+CJB
2+{2(/ l+/3)±^}2]1/2 

/ * + / 4 - [#4- {2 (/!+/») ± 4 }2]i/2 

D+J4-Ji±2(Ji-J3) 

Z>+/4+Jr2±2 (/!+/») 

/4-/2+C^2-f{^=t:2(/1-/S)}2]1/2 

/ 4 - / 2 - [ i 5*+M±2( / 1 -7 8 ) } s ] ^ 

/ 2 +/ i+P^H- {4 ±2 (/i+78) }2]^2 

72+/4-CB2+{^i2C/1+/3)}2]1/2 

J 9 + / 2 - / 4 
D+/2+/4rb2(/1+/ ; J) 

/ 2 " / 4 ± { ^ 2 + ^ 2 } 1 / 2 

/ 2 + / 4 + [ S 2 + { ^ ± 2 (/! + / , ) }2]^2 

/ 2 + / 4 - [ £ 2 + {A ± 2 ( / r f / 3 ) }2]1/2 

D + / 2 + / 4 

D + / 2 + / 4 = b 2 ( / 1 + / 3 ) 

/2-f/4:±={^2+£2} l /2 

r2' 

€10 

€11 

€12 

€1, € 2 

€3 

€4 

€5, €7 

€6, € 8 

€9 

€10 

€11 

€12 

/ 2 + / 4 + [^ 2 +{^±2( / 1 +/ 3 )} 2 ] 1 /2 

/ 2 + / 4 - C ^ 2 + { ^ ± 2 ( / 1 + / 3 ) } 2 ] 1 / 2 

D-J2+Ji 

Z> + /2 + / 4 ± 2 ( / 1 + /3) 

-J2+/4db{^2+jB2}1/2 

/2+/4+C^2H-{^±2(/1+/3)}2]1/2 

/2+/4~C52+{^=fc2(/1+/3)}2]^ 

(€m in)r1=/2+/4-C^2+{^ + 2(/1+/3)}2]1/2
J 

or = ™ / 2 + / 4 - [ ^ 2 + { ^ + 2(/3-/ i)}2]1 / 2 , (2.14) 

( € m i n ) r i ^ (€min)r2 ' = (€min)r 2 i ry = (€min)r3 , ( 2 . 1 5 ) 

(emin)G,r3 '= (€m in)r2
/= (€min)r2frY S (€min)rv (2.16) 

And further, if the inequality relation 

J2>2Ji8 (2.17) 
with 

8^(A + 2J,)/{B'+(A + 2Jzyy12, 0<5<1 (2.18) 

is satisfied, we can conclude that the lowest eigenvalue 
belongs to type Fi, and 

*mir= -J2+JA~ZB*+{A + 2(JZ- JX)}2]1 '2. (2.19) 

The corresponding eigenvector is given by 

£= l/V2{a, 0, b, -a, 0, - i , c, 0, rf, - c , 0, -d), (2.20) 

where a, b, c, and d are determined by the following 
relations: 

a2+b2+c2+d2=i, 

a+c=0y 

(2.21) 

B 

1/2 ^+2a3-/i)+c^2+{^+2(j3-/i)}2] 

The latter two relations can be found easily from the 
4X4 submatrix of T-1AT (A for type Fi) in which the 
lowest eigenvalue (2.19) is included. This eigenvector is 
a physically realistic solution and the orientations of 
spins S(1), S(2), S(3), and S(4) are found to be in the direc­
tions of the following four unit vectors, respectively, 

S « V2{ a,0, 
S(2) v2{-a,0, 
S»> v2{-a,0, 
S<4> v2{ a,0, 

(2.22) 

In Fig. 2 and Fig. 3, we show the arrangement of four 
sublattice spins. All spins make an angle #o with the z 
axis in the z-x plane clockwise or counterclockwise, and 
#o is given by 

D=tan l 

X-
B 

1/2 
. (2.23) 

, 4 + 2 ( / 3 - / i ) + C ^ 2 + { ^ + 2 ( / 3 - / i ) } 2 ] 

In the sublattice type, F1? S<*> and S<3), (S<2), and 
S(4)) are the spins in the same b-c plane. Therefore, if 
#o= 0, the present figure becomes identical with the spin 
arrangement shown in Fig. 2 by dashed arrows, in which, 
for instance, S(1) and S(3) point in the — z direction and 
S(2) and S(4) point in the +z direction. It should be 
pointed out that in the antiferromagnetic state there 
will exist x components of the spins, and the z axis is 
not the direction of the preferred spin alignment. Based 
on this spin arrangement, the small finite value of 
Xs extrapolated to 0°K can be explained, and the 

FIG. 3. The ordered spin arrangement 
of four sublattice spins. 
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explanation of the proton-resonance experiment should 
not be changed essentially. 

3. SUSCEPTIBILITIES AT 0°K 

As shown by the experiments of Schriempf and 
Friedberg, Xz resembles the susceptibility of a typical 
antiferromagnet measured along the direction of pre­
ferred spin alignment. The data taken at the lowest 
temperature, however, may extrapolate to a small finite 
value at 0°K. This corresponds to the fact that the z axis 
is not, strictly speaking, the preferred spin axis in the 
present four-sublattice model. Taking into account this 
situation, we shall calculate the susceptibilities along 
the directions of the principal axes at 0°K in the classical 
way. 

Let us denote the direction cosines of the spins be­
longing to sublattice (1) by (£oAfo) in the absence of 
a magnet field. The direction cosines of the spins belong­
ing to sublattices (2), (3), and (4) can be denoted by 
(-&>, 0, - f 0 ) , ( - f o , 0 , f 0 ) , and (fo, 0 , - f 0 ) , respec­
tively. In the presence of a magnetic field, however, 
the direction cosines of these sublattice spins will be de­
noted as ( ^ W ^ f ( 1 ) ) , (£ (2W2) ,f (2 )), (£ (3W3) ,f (3 )), and 
(£(4)>??(4)>f <4))> respectively. If the polar and azimuthal 
angles corresponding to (£o,0,fo) and (£(1),?7(1),f(1)) a r e 

7r/2— #o and 0, and ir/2~- ($o+0i) and <ph respectively, 
we have 

^1 ) = cos(^ o +0i)cos^i , 

7?(1) = cos($o+0i) sin<pi, 

r^sinOM-fli). 

(3.1a) 

Similarly, 

£ ( 2 ) = -

f ( 2 ) — 

-COS(#o+#2) COS<£>2, 

-cos(#o+#2) sin<p2, 

-sinO?o+02), 

£ ( 3 ) = — C O S ( # 0 — 0 3 ) COS<^3, 

-cos(do—6z) sin^3 , »(3) = 

(3.1b) 

(3.1c) 

f<3> = sin(<V-03), 

£<4> = COS(--tM-04) cOS^4, 

??(4) = cos(~#o+04) sin^4, (3.1d) 

f<4>-sin(~#o+04). 

We expand (3.1a) in powers of 0i and <pi and have 

$(1) = & { l - I W + r f ) } ™ ^ i , 

^ ( 1 )=?o^i~fo0i^i , (3.2) 

f(1) = r o ( l - R 2 ) + ^ i . 

Similar expressions for £(i), r)(i\ and f(i) are obtained 
from (3.1b), (3.1c), and (3.1d). 

We substitute these expressions into the energy 
expression (2.6) for the Ti type. Then terms linear with 

respect to <ph <̂ 2, vs, and cpi will not appear and terms 
linear with respect to 0i, 02, 03, and 04 will be seen to 
vanish, if we use the relation (2.23). Therefore, the 
energy up to quadratic terms can be written as 

£=(iV/4)52{Eo+P(0i2+022+032+042)~4/1(?o2-ro2) 
X (0103+0204)-2/2(0102+0304) 

+ 4/3(£O
2-rO2)(0104+0203) + Q(^l2+ ^22+ <Pz' + W2) 

— 4/if0
2(^l <^3+^2^4) — 2/2?02(^1^2+^3^4) 

+4/3£o2(<Pi<?4+ <pwz)} , (33) 

where EQ and P and Q are given by 

E 0 - 4 ( / 4 ~ / 2 ) + 4 ( a 2 - - f o 2 ) ( ^ + 2 / 3 ~ 2 / 1 ) + 8 ^ o f o , 

P - / 2 ~ - 2 ( ^ o 2 ™ f o 2 ) ( ^ + / 3 - / i ) - 4 ^ 0 f o 7 (3.4) 

C = ( 2 / 1 + / 2 - 2Jz+D~~A)tf-~BUo. 

The magnetic moment along each coordinate axis can 
be expressed as 

= (^/4)MB5{^(fo/2)(~01
2+02

2+032~042) 
+ ^lfo(-01+02-03+04) 
+^4(fo/2)(-01

2+02
2+032~042) 

+£4£o(0i-02+03-04)}, (3.5a) 

= (N/4:)jUBSg2{£o(.<pl~ <P2— <PZ+ <Pi) 

~fo(01^1 — 02<£>2+ 0z<p3 — 04(pi)} , (3.5b) 

M^(iV/4)MB^{^(f^)+f (2 )+r (3 )+f (4 )) 
+ g 4 ( f ( l ) + ? ( 2 )__ j ( 3 )__ r 4 ) ) } 

-(iY/4)MB5{^(fo/2)(-01
2+022~032+042) 

+ ^3fo(01-02--03+04) 

+ ^4(?o/2)(-01
2+022-032+042) 

+ ^4fo( -01+02+03-04)} , (3.5C) 

where gh g2, gs, and g4 are the nonzero components of 
the single-ion g tensor in the system of macroscopic 
principal axes and are given by 

gi=gz**=gy' cosVfgy sin2o!, 

gz=gzz=gv' s i nVfgy cos2a, 

g*=gxz= (gy' — gz*) sina cosa. 

(3.6) 

For ions of sublattices (3) and (4), g4 has the opposite 
sign. The spin orientation of lowest energy in the 
presence of a magnetic field H can be obtained by 
minimizing E— M»H with respect to 0; and <pt. The 
values of 0* and <pi which correspond to that spin 
orientation are substituted in the expression for the 
magnetic moment, and so the susceptibility X»- will be 
obtained. 

First in the case of H||# axis. The minimization of 
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E—MXH leads to Let us next calculate Xz. In this case, we have a 
. . ,_. solution 

<Pi=<P2=<Ps=<P4:=lJ, {o.i) 

e 1 =-e 4 =(- l /A)(<r 1 f 0 -<74 |o) *>i=*»=<Ps=*>4=0, (3.14) 

X{2P-o- i? 0 - (74ro-4 / 3 (^ 2 - fo 2 ) 6x= - 0 3 = (l/A')(«r»fo-o-4fo) 
- 2 / 2 + 4 / ! ( ^ - f o 2 ) } . (3.8) x{2P-<73fo-<T4?o+4/1(fo2-fo2) 

0 2 = - 0 3 = ( l / A ) ( < n f o - < ^ o ) - 2 / 2 - 4 / 3 ( ? o 2 - f o 2 ) } , (3.15) 

X{2P+cr1fo+<r4fo-4/3(^o2-fo2) gi= _gi= (-l/A')(<r,fo-«T4fo) 
- 2 / 2 + 4 / 1 ( | o 2 - f o 2 ) } , (3.9) X { 2 F + ^ o + « r 4 & + 4 / i ( ^ - f 8 » ) 

where _ 2 / 2 - 4 / 3 ( £ 0
2 - f o 2 ) } , (3.16) 

A= { 2 P - 4 / 3 ( £ 0
2 - f o 2 ) } 2 - (<n!o+<T4fo)2 where 

- { 2 / 2 - 4 / ! ( f o 2 - f o 2 ) } 2 , (3.10) 
A'= {2P+4/ 1 ( Jo 2 - ro 2 )} 2 - (c rs fo+^o) 2 

<Ti=lx*Hgi/S. (3.11) _ { 2 / 2 + 4 / 3 ( £ 0
2 - f o 2 ) } 2 . (3.17) 

The susceptibility along the x axis Xx can therefore be ~ y. 
written as 

x.x— 
iVMB2(giro-g4?o)2 „ _ ^MB2(g3?0- |4fo)2 

4/2-4(£0
2-

iWgi2 j 

8 1 

X— 

-U2)(A+2Js)-SBUo 

i* B l 2 

gxif+^+Z2)1 '2) 

(£2+JST2)1'2+/f 

4 / 2 + 4 ( £ o 2 - r o 2 ) ( 2 / i - . 4 ) - 8 £ £ o r o 

i V w » V [ . g 4 i f + ( 5 2 + i f 2 ) 1 / 2 i 2 

£3 £ 

(Bz+Ktyiz-K 
(3 12) X . (3.18) 

J2(B^+K^+K(A+2JZ)+B^ { ' ) j^+Kzyt+KU-VJ+B* 

where Finally, to obtain Xy in the presence of a magnetic 
K—A-\-2(Jz—Ji). (3.13) field along the 3/ axis, we note that there is a solution 

dl=02==-ez=-e,= -cT2^<Pi/{2P-2J2+4:(^2-to2)(Ji-Jz)}, (3.19) 

c r 2 ?o{2P-2 / 2 +4(?o 2 - fo 2 ) ( / i - /3 )} 
(Pi= — <p2~ — <Pz= <£>4= . (3.20) 

{ 2 e + 2 ? o 2 ( / 2 + 2 / 1 + 2 / 3 ) } { 2 P - 2 / 2 + 4 ( ? o 2 - f o 2 ) ( / i - / 3 ) } - ( ^ f o ) 2 

Thus the susceptibility is written as According to Schriempf and Friedberg, the calculated 
splitting factors are approximately gy = 2,16, gy> = 2.20, 

x =
NfXB<lg22 ^ and gy = 2.21. Then we have, from (3.6), 

2 (4Ji+2J2+D-A)tf-Bteo' gi=2.20, g 2 =2.21 , g8=2.18, g4=0.02. (3.23) 

_ ^ B g2 1 Xhe exchange parameters Jh J2, and 7 3 can then be 
2 2(J +J +J }-\-DJr(B2JrK2Y12' ' estimated by using these numerical values. First, we 

can eliminate J2 from two equations [(3.12) and (3.18)] 
The susceptibilities Xx, Xv, and Xz which are given by and get a relation 

Eqs. (3.12), (3.21), and (3.18), respectively, will be j \j ^p (j.^_ j \ (2 04) 
compared with the experimental values extrapolated to 3 1 

0°K. Within the limits of experimental uncertainty, Similarly, after some manipulation, we can get another 
these may be taken to be relation 

X*=0.24 (cgs/mole), J,+Ji=F2(J^~J1) (3.25) 

Xv== °'26> (3*22) from (3.12) and (3.21). These are plotted in Fig. 4. Both 
Xz= 0.07. curves cross only at Jz~Ji= 0.055& and J 8 + / i = 0.040&. 
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Thus we obtain 

J ±=-0.007 k, 7 8 = 0.047&, 

and by substituting them into (3.21), we get 

72=0.103*. 

These estimations seem to be reasonable in their order 
of magnitude and are consistent with the assumption 
(2.11). By using these values, we have 6=0.55. This is 
also consistent with the assumed inequality relation 
(2.17). Therefore, our four sublattice model will explain 
the antiferromagnetism in FeCl2-4H20 satisfactorily 
with the above exchange integrals. The angle do that the 
spin axis makes with the z axis amounts to 28°. 

4. DISCUSSION 

The spin arrangement in FeCl2*4H20 which we 
obtain using a f our-sublattice model is analogous to that 
in CuCl2*2H20. Moriya has proposed a spin arrange­
ment in antiferromagnetic CuCl2-2H20 in which spins 
alternately deviate from the preferred spin axis (a axis) 
clockwise or counterclockwise in the a-c plane. In 
CuCl2- 2H20, the so-called Moriya-Dzyaloshinsky inter­
action D- (Si x S2) exists between two spins Si and S2 in 
addition to the ordinary exchange interaction and gives 
rise to a deviation from the pure antiparallelism of two 
spins. 

Let us designate the point bisecting the straight line 
which connects two ions as C. We can see that in 
FeCl2-4H20, D for the first nearest-neighboring ions 
should be parallel to the c axis because there exists along 
the b direction a screw axis through the point C (so that 
D±.b axis) and an approximate twofold axis exists at C 
along the a' axis (so that D_La' axis). D for the second 
or the fourth nearest-neighboring ions should be zero, 
because a center of inversion is located at C in both 
cases. Between third nearest-neighbor ions, D also 
exists (D_L6 axis). According to Moriya, \D\~(Ag/g)J 
where Ag is the deviation of the g factor from the value 
for a free electron. In the present case, it amounts to 
about 10% of / . Due to this interaction, the angle 0O 

of 28° in the z-x plane might be slightly changed. Our 
present pattern of spin arrangement could be considered 
to originate mainly in the one-ion anisotropic crystalline 
field, as can be seen from its derivation. Because Ji and 
/ 3 are small compared with the coefficient of the crystal­
line field, the Moriya-Dzyaloshinsky contributions are 
not expected to modify the present results significantly. 

In the molecular field approximation, the Neel tem­
perature TN is given by the highest root of the simul­
taneous equations relating the components of the spin 
vectors. It becomes clear that the roots of such an 
equation are equal to the eigenvalues of (2.7b) reversed 
in sign and with a factor 2S(S+l)/3k. Therefore, the 
Neel temperature is given by 

TN={2S(S+l)/3k) 
X[/2~ 

0.4 

0.2 

3 

0.2 

0.4 

-

-

i 1 

/ F , ( J S - J , ) 

{ i I 

1 1 1 

\F 2 (J 3 - -J , ) 

1 1 \ 

-

-

H 

H 

—j 

0.1 0.2 0.3 

- / 4 + [ ^ + { ^ + 2(/3-/1)}2]1/2]. 

FIG. 4. Dependence of functions Fi(Js—Ji) and F2(Js — Ji) 
upon J3—J1. F^iJz—Ji) is mono tonic, whereas Fi(J3 —Ji) should 
diverge to infinity at Jz—Ji~—A/2. Both curves, however, cross 
only once at the point shown in this figure. The coordinates are in 
unit of k. 

Taking 5=2, and using the estimates of the isotropic 
exchange parameters, we get 7V= 5.92°K. As there is no 
estimate of 74, we put / 4 = 0 to get this value of TN. 
This will be too large even though we started from the 
molecular-field approximation. The low-lying two levels 
of the spin quintet which are separated more than 8k 
from the excited levels and whose separation is about 
OAk would suggest to us a fictitious spin of one-half in 
the antiferromagnetic state. If so, we can evaluate 
TJV=0.74°K, which is reasonably consistent with the 
value deduced from the magnetic measurements. 
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APPENDIX 

The effect of the dipole interaction on the results 
which we have obtained in the text will be considered 
here. The dipole interaction is given, as usual, 

i>k 

where Uk is the unit vector connecting the ions i and k 
rik the distance between them, and #*= gjuBSi the mag 
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TABLE II. Numerical values of Gr" (in units of cm-3). 

M 

X 

y 
z 

Gi"X10-*2 

2.237 
-1.648 
-0.588 

GVX10-22 

-1.455 
0.467 
0.989 

6VX10"22 

-0.869 
0.552 
0.318 

CVXIO"22 

0.740 
-0.126 
-0.614 

netic moment. For the dipole and exchange interactions, 
the Hamiltonian of the Ith spin can be written as 

where suffixes /* and v represent coordinates x, y, and z. 
Due to the crystalline symmetry, ^ w C w

( I m ) and 
2Zm Cyz

(lm) will vanish, and the nonzero coefficients can 
be obtained using the dipole sum and the exchange 
parameters. This can be done in the same way as in the 
author's previous work on the Tutton salts.9 As we are 
considering the four-sublattice model, summation is 
taken over lattice points belonging to each sublattice. 
We have to consider seven sublattice models as in Sec. 2, 
and so the nonzero coefficients £ w Cxx

(lm\ etc., have 
different values depending on the model. The matrices 
corresponding to Eqs. (2.7) become very complicated, 
and the corresponding eigenvalue problems cannot be 
solved analytically. However, as to the effect of the 
dipole interaction on the ordered spin arrangement, we 
can make the following statements: In the present spin 
system, the dominant energy is the interaction with the 
crystalline field (2.2). The ordered spin arrangement in 
which spin components are mostly in the z direction can 
be easily understood because A and D have positive 
values. We shall consider the dipole energy in the case in 
which all spins are along the z axis. Then we can con­
clude that the most stable arrangement is one in which 
spins in one b-c plane are parallel to one another and 
antiparallel to those in adjacent b~c plane. There is no 
conflict with the previous conclusion that the lowest 
energy spin arrangement is of the Ti type. Because of the 
monoclinic crystal symmetry we have the nonvanishing 
xy component ^mCxy

(lm\ Therefore, strictly speaking, 
the dipole interaction not only slightly changes the spin 
orientation in the x-z plane, but also gives rise to a 
deviation from the x-z plane, though it may be very 
small. 

Next we shall modify the calculation of the suscepti­
bilities in Sec. 3. For simplicity, we shall neglect g4 in 
0CdiP and define the following dipole sums. 

^ - E ( 3 ) [ i ~ 3 ( ^ ) 2 ] A ^ , 
k 

G^=EwD-3(/«")*]/r*', 
(A3) 

G3"=E(4)[l-3(to")2]Aifc
3, 

where U^ is the /JL component (JU = #, y, z) of tik, and the 
lattice point i is on the sublattice (1), and X^ 0 ) means 
the summation over the lattice points of the jth sub-
lattice. The numerical values for the Ti type are listed 
in Table II. 

The modified expressions for XXy Xyy and Xz are given 
as follows: 

X,= =iVMB2(gifo-^o)2{4/2~4(^2-fo2)(^ + 2/3) 
-&B{ar0+4(Gi*-GiO+2(G2*+G20 
-4(G3*+G3*)(£o2-fo2) 

+2{Gs~Gf)(tf~-U2))~\ (A4) 

*y= ( ^ B V ! O 2 / 2 ) { (4Ji+2J2+D-A)tf-BM o 

+£2(G1*+Gi*)+(Gi*+Gi'>)--2(Gi*--Gt'') 
-{Gf-G,y)-]m-\ (AS) 

X2-^B2(g3^o~^:o)2{4/2+4(^o2-ro2)(2/i-^) 
~8^^0fo+4(G1-+^)(|o2-fo2) 
+2(G2*+G2*)-HGz*-Gz*) 

+2(^-G^)(^o 2~fo 2 )}" 1 . (A6) 

Accordingly, the two curves of Eqs. (3.24) and (3.25) 
shown in Fig. 4 would shift and cross at another point, 
namely, 7 3 ~ / i = 0.080& and / 8 + / i = G.070&. Therefore 
our previous estimates of the exchange parameters 
would be changed to 

Ji= --0.005&, / 2 = 0.1544, Jz= 0.075k. 

These values are still consistent with the assumption 
(2.11) and (2.17) and seem to be reasonable in their 
order of magnitude. The corrected value of the angle 
So is 27°. 

3Cdip+3Cex= L C^SuJSn*, (A2) G4 
k 

-3(/«")»]/r4l 


